Cet article revient sur la notion de biais dans les modèles de langue. On montre à partir d'exemples tirés de modèles génératifs pour le français (de type GPT) qu'il est facile d'orienter, à partir de prompts précis, les textes générés vers des résultats potentiellement problématiques (avec des stéréotypes, des biais, etc.). Mais les actions à accomplir à partir de là ne sont pas neutres : le fait de débiaiser les modèles a un aspect positif mais pose aussi de nombreuses questions (comment décider ce qu'il faut corriger ? qui peut ou doit le décider ? par rapport à quelle norme?). Finalement, on montre que les questions posées ne sont pas seulement technologiques, mais avant tout sociales, et liées au contexte d'utilisation des applications visées.