5-9 juin 2023 PARIS (France)
IR-SenTransBio: Modèles Neuronaux Siamois pour la Recherche d'Information Biomédicale
Safaa Menad  1, *@  
1 : Equipe Traitement de l'information en Biologie Santé - LITIS
Laboratoire d'Informatique, du Traitement de l'Information et des Systèmes, Université de Rouen Normandie
* : Auteur correspondant

L'entraînement de modèles transformeurs de langages sur des données biomédicales a permis d'obtenir des résultats prometteurs. Cependant, ces modèles de langage nécessitent pour chaque tâche un affinement (fine-tuning) sur des données supervisées très spécifiques qui sont peu disponibles dans le domaine biomédical. Dans le cadre de la classification d'articles scientifiques et les réponses aux questions biomédicales, nous proposons d'utiliser de nouveaux modèles neuronaux siamois (sentence transformers) qui plongent des textes à comparer dans un espace vectoriel. Nos modèles optimisent une fonction objectif d'apprentissage contrastif auto-supervisé sur des articles issus de la base de données bibliographique MEDLINE associés à leurs mots-clés MeSH (Medical Subject Headings). Les résultats obtenus sur plusieurs benchmarks montrent que les modèles proposés permettent de résoudre ces tâches sans exemples (zero-shot) et sont comparables à des modèles transformeurs biomédicaux affinés sur des données supervisés spécifiques aux problèmes traités. De plus, nous exploitons nos modèles dans la tâche de la recherche d'information biomédicale. Nous montrons que la combinaison de la méthode BM25 et de nos modèles permet d'obtenir des améliorations supplémentaires dans ce cadre.


Personnes connectées : 8 Vie privée
Chargement...